ارسالی نوریه
بلور شکلی از ماده جامد است که در آن مولکولها ٬ اتمها و یونها با آرایشی منظم در کنار یکدیگر قرار دارد . تکرار این آرایش منظم در سه جهت فضایی سبب بزرگتر شدن بلور می شود . نظم بیرونی بلورها ٬ بر اثر نظم درونی آنهاست. بدلیل همین نظم ٬ سطحهای خارجی بلورها صاف و هموار هستند . این سطحهای صاف با یکدیگر زاویه هایی می سازند که اندازه های آنها در بلورهای یک ماده همواره ثابت است . یکی از راههای تشخیص بلورها ٬ از یکدیگر اندازه گیری زاویه بین سطحهای آنهاست . بلورها به شکلهای مکعب ٬ منشور ٬ هرم و چند وجهیهای مختلف هستند و معمولا” سطحها و زاویه های هر شکلی از آنها مشابه و قرینه یکدیگرند .
تبلور
بلورها بر اثر تغییر فشار و دما در محلولها ٬ مواد مذاب ٬ مواد جامدو بخار بوجود می آید . مثلا” بر اثر کاهش دما بلورهای برف ٬ از ابر و بلورهای نمک طعام از آب شور دریاچه های نمکی جدا می شوند . غلظت آب این دریاچه های شور ٬ بر اثر تبخیر یا کاهش دما ٬ به حالت اشباع و فوق اشباع در می آید و بلورهای نمک از آن جدا می شود . بلورهای تشکیل دهنده سنگهای آذرین از سرد شدن ماگما ( سنگهای ذوب شده درون زمین ) به وجود می آیند . بلورهای سنگهای دگرگون مانند سنگ مرمر از تاثیر دما و فشار زیاد بر سنگهای دیگر شکل می گیرند . به فرآیند تشکیل بلورها تبلور گفته می شود .
هنگامی که دما یافشار تغییر می کند و یا تبخیر روی می دهد و شرایط مناسب تبلور ایجاد می شود ٬ اتمهای مواد به یکدیگر می پیوندند . این اتمها معمولا” در اطراف ذرات موجود در محیط جمع می شوند . این ذرات هسته تبلور نامیده می شوند . هسته تبلور از ذرات ناخالص یا بلورهای خرد شده یک ماده تشکیل می شود . گاهی نیز شماری از اتمهای ماده اصلی کنار هم قرار می گیرند و هسته تبلور را می سازند . اتمهای دیگر نیز به تدریج در اطراف این هسته جمع می شوند و با آرایشی منظم در کنار یکدیگر قرار می گیرند . کوچکترین واحد ساختاری منظم هر بلور را سلول اولیه آن بلور می نامند .
دستگاههای بلورشاختی
در طبیعت شکل سلول اولیه در بلور کانیهای مختلف تفاوت دارد . به طور کلی شش نوع سلول اولیه در نتیجه شش نوع بلور کانی وجود دارد . هر یک از این شش نوع بلور متعلق به یک دستگاه بلور شناختی است . دستگاههای بلور شناختی عبارتند از مکعبی ٬مربعی ٬راست لوزی ٬تک شیب ٬سه شیب ٬. شش وجهی .
در دستگاه مکعبی هر سه محور ( سه جهت فضایی ) یا هم مساوی و بر هم عمود هستند مانند بلورهای نمک طعام و سولفید آهن .
دستگاه مربعی
:فقط دو محور با هم مساوی هستند اما اندازه محور سوم با آنها یکی نیست . این سه محور نیز بر هم عمود هستند . در این دستگاه ساده ترین بلور به شکل منشور است که سطح قاعده آن مربع است مانند بلورهای اکسید قلع و اکسید تیتان .
دستگاه راست لوزی
:محورها نا مساوی اما بر یکدیگر عمود هستند . ساده ترین بلور در این دستگاه منشوری است که قاعده آن به شکل لوزی یا مستطیل است . مانند بلورهای گوگرد و کربنات کلسیم .
دستگاه تک شیب
:سه محور نابرابرند و دو تا از آنهابر هم عمودند مانند بلورهای میکا٬ تالک و گچ آبدار.
دستگاه سه شیب
:سه محور نابرابرند و هیچیک بر هم عمود نیستند . در بلور ساده سه شیب همه وجه ها متوازی الاضلاع هستند . مانند بلورهای گروهی از فلدسپاتها .
دستگاه شش وجهی
:چهار محور وجود دارد که طول سه محور آن برابر است . این سه محور در یک صفحه قرار دارندو با هم زاویه ١٢٠ درجه می سازند . محورچهارم عمود بر آنهاست مانند بلورهای کوارتز .
در هر یک از دستگاهها ٬ بلورها را بر اساس تقارن موجود در آنها به رده هایی تقسیم
می کنند . در شش دستگاه بلور شناختی ٣٢ رده بلوری تشخیص داده شده است .
هنگام تشکیل بلورها ٬ اگر فضا و زمان و شرایط مناسب وجود داشته باشد بلورهای درشتی بوجود می آیند . این بلورها را بصورت تک بلور می توان مشاهده و بررسی کرد و رده و دستگاه بلور شناختی آنها را مشخص کرد . اگر شرایط مناسب نباشد ٬ بلورها به اندازه های کوچکتر و بصورت مجموعه ها و توده های ریز تشکیل می شوند . گاهی بلورها به قدری ریزهستند که نمی توان آنها را با چشم دید و برای مطالعه آنهاازذره بین ٬
میکروسکوپهای نوری و الکترونی و اشعه ایکس استفاده می شود .
مقدمه
با نگاه کردن به ساختار داخلی بلورها ، دانشمندان امروزه میدانند که بلورها به این دلیل همیشه شکلهای منظم و قابل شناسلیی دارند که اتمهای داخل آنها همیشه به شکل الگوهای مشخصی که شبکه نام دارند در کنار یکدیگر قرار میگیرند. خواص یک بلور به شبکه آن بستگی دارد. به عنوان مثال الماس به این دلیل بسیار سخت است که اتمهای آن با پیوندهای بسیار قوی به هم متصل شدهاند و یک شبکه مستحکم را بوجود آوردهاند. دانشمندان شبکه بلورها را با استفاده از اشعه ایکس مطالعه میکنند. این مطالعات آشکار ساخته است که همه بلورها را میتوان فقط به هفت ساختار پایه طبقه بندی کرد، که با ساختار شبکه هر بلور تعیین میشود.
تاریخچه
در پی کشف پراش اشعههای ایکس توسط رونتگن و انتشار یک رشته محاسبات و پیشبینیهای ساده و موفقیت آمیز در مورد ویژگیهای بلورین ، بررسی ساختارهای بلوری بصورت دقیقتر شروع گردید. ناظرهای اولیه با توجه به نظم شکل خارجی بلورها به این نتیجه رسیدند که بلورها از تکرار منظم سنگ بناهای همانند بوجود میآیند. زمانی که بلوری در شرایط محیطی ثابت رشد میکند، شکل آن در حین رشد تغییر نمیکند، گویی سنگ بناهای همانند بطور پیوسته به آن افزوده میشوند. این سنگ بناها ، اتمها یا گروههایی از اتمها هستند، که بلور یک آرایه متناوب سه بعدی از اتمهاست. این موضوع با این کشف کانی شناسان در قرن هیجدهم که اعداد شاخص جهتهای تمام وجوه بلور اعداد درستند، آشکار شد.
آزمایش ساده
یک لیوان معمولی برداشته و آن را از آب پر کنید. حال مقداری شکر در داخل لیوان ریخته و آن را با قاشق به هم بزنید، تا شکر کاملا در آب حل گردد. این عمل را تا جایی ادامه بدهید که دیگر شکر اضافه شده به آب لیوان در آن حل نشود و در لیوان ته نشین گردد. چنین محلولی را اصطلاحا محلول اشباع شده آب و شکر میگویند. حال یک دانه حبه قند را که قسمتی از آن شکسته شده است و بصورت مکعب کامل نمیباشد، انتخاب کنید.
حال حبه قند را بوسیله یک تکه نخ بسته و در داخل لیوان آویزان کنید. بعد از چند روز ملاحظه میکنید که قسمت شکسته شده حبه قند کاملا ترمیم یافته و حبه قند بصورت مکعب کامل در آمده است. این آزمایش نمونه بسیار ساده از رشد بلور است.
ساختار کلی
بلور ایده آل از تکرار بی پایان واحدهای ساختاری همانند در فضا بوجود میآید. در سادهترین بلورها ، مانند مس ، نقره ، آهن و فلزات قلیایی ، این واحدهای ساختاری یک تک اتم است. در اکثر مواد واحد ساختاری شامل چندین اتم یا ملکول است. در بلورهای معدنی این تعداد تا حدود 100 و در بلورهای پروتئین به 10000 میرسد. ساختار تمام بلورها بر حسب شبکهای که به هر نقطه آن گروهی از اتمها متصل هستند، توصیف میگردد، این گروه اتمها را پایه میگویند، پایه در فضا تکرار میشود تا ساختار بلور را تشکیل دهد.
ساختار بلوری غیر ایده آل
از نظر بلورنگاران کلاسیک ، بلور ایدهآل از تکرار دورهای واحدهای یکسان در فضا شکل میگیرد. ولی هیچ دلیل عمومی وجود ندارد که بلور ایدهآل حالت مینیمم انرژی اتمها در صفر مطلق باشد. در طبیعت ساختارهای بسیاری وجود دارند که با آنکه منظم هستند، کاملا دوره نیستند. نظر ایدهآل بلورنگاران لزوما یک قانون طبیعت نیست. بعضی از ساختارهای غیر دورهای ممکن است فقط فرا پایدار باشند و طول عمر بسیار درازی داشته باشند.
انوع ساختار بلوری
انواع مختلف ساختارهای بلوری وجود دارند که چند مورد از ساختارهای بلوری ساده و مورد توجه همگانی عبارتند از:
* بلور مکعبی مرکز سطحی (fcc) :
در این حالت سلول یاخته بسیط ، لوزی رخ است. بردارهای انتقال بسیط نقطه شبکه واقع در مبدا را به نقاط شبکه واقع در مراکز وجوه وصل میکنند.
* بلور مکعبی مرکز حجمی (bcc) :
در این حالت یاخته بسیط لوزی رخی است که هر ضلع آن برابر است و زاویه بین اضلاع مجاور است.
* بلور کلرید سدیم Nacl :
در این حالت پایه شامل یک اتم Na و یک اتم Cl است که به اندازه نصف تعداد اصلی مکعب یکه از هم فاصله دارند.
* بلور کلرید سزیم CsCl :
در این حالت در هر یاخته بسیط یک مولکول وجود دارد. هر اتم در مرکز مکعبی متشکل از اتمهای نوع مخالف قرار دارد.
* ساختار بلوری تنگ پکیده شش گوش (hcp) :
در این ساختار مکانهای اتمی یک شبکه فضایی را بوجود نمیآورند. شبکه فضایی یک شش گوشی ساده است که به هر نقطه شبکه آن پایهای با دو اتم یکسان مربوط میشود.
* ساختار الماسی :
در این حالت شبکه فضایی fcc است. این ساختار نتیجه پیوند کووالانسی راستایی است.
* ساختار مکعبی سولفید روی ZnS :
ساختار الماس را میتوان بصورت دو ساختار fcc که نسبت به یکدیگر به اندازه یک چهارم قطر اصلی جابجا شدهاند، در نظر گرفت. ساختار مکعبی سولفید روی از قرار دادن اتمهای Zn روی یک شبکه fcc و اتمهای S رویی شبکه fcc دیگر نتیجه میشود.
* ساختار شش گوشی سولفید روی (و ورلستاین):
اگر فقط اتمهای همسایه اول را در نظر بگیرید، نمیتوان بین دو حالت ZnS مکعبی و شش گوشی فرق گذاشت. اما اگر همسایههای دوم را در نظر بگیریم میتوان این دو حالت را از هم تمییز داد.
علت مطالعه ساختارهای بلوری
از آنجا که بیشترقطعات الکترونیکی مانند دیود ، ترانزیستور و … از بلورها ساخته میشود. همچنین به دلیل گسترش روز افزون وسایل الکترونیکی و توجه بیش از حد به ساختن ریزتراشههای کامپیوتری با ابعاد بسیار کم ، توجه فوق العاده به سمت بلور شناسی و مطالعه ساختارهای بلوری شده است. و دانشمندان مختلف در سطح جهان مطالعات وسیعی را در این زمینه انجام میدهند، که از آن جمله میتوان به فعالیتهای انجمن نانوتکنولوژی اشاره کرد.
خواص بلور ها
مقدمه
در بلورها پراکندگی و فاصله اجزا ٬ دارای نظم هندسی ویژهای است که معمولا” در تمام جهتها یکسان نیست. برخلاف بلورها در جامدهای بی شکل یا غیر بلورین پراکندگی و فاصله اجزای سازنده آنها در همه جهتها یکسان است. از اینرو بعضی از خواص فیزیکی جامدهای غیر بلورین ٬ مانند رسانایی گرمایی ٬ انتشار نور و رسانایی الکتریکی نیز در همه جهتها یکسان است. به این جامدهای غیر بلورین همسانگرد (ایزوتروپ) میگویند. چون خواص فیزیکی بیشتر جامدهای بلورین در جهتهای مختلف متفاوت است به آنها ناهمسانگرد میگویند. تنها بلورهایی که در دستگاه مکعبی متبلور میشوند مانند اجسام غیر بلورین عمل میکنند، چون در سه جهت فضایی دارای ابعاد مساوی هستند.
کاربرد ناهمسانگردی
پدیده ناهمسانگردی سبب پیدایش خواصی در بلورها میشود که کاربردهای مختلف و مهمی در صنعت دارند. مثلا” اگر بلورهایی مانند کوارتز و یا تورمالین را از دو طرف بکشیم و یا فشار دهیم در جهت عمود بر فشار یا کشش دارای بار الکتریکی مخالف یکدیگر میشوند. اگر جهت این فشار یا کشش را عوض کنیم نوع بار الکتریکی تغییر میکند، به این پدیده پیزوالکتریک میگویند.
گرما در بعضی از بلورها الکتریسته ایجاد میکند و سبب میشود یک سوی آنها بار مثبت و سوی مقابل بار منفی بیابد. در نتیجه میان این دو سو اختلاف پتانسیل الکتریکی بوجود میآید. همچنین اگر به این بلور جریان الکتریکی متناوب وصل کنیم، بلورها به تناوب منبسط و منقبض میشوند و بر اثر ارتعاش ٬ صوت تولید میکنند. از این خاصیت برای تولید صوت ٬ ماورای صوت ٬ نوسانهای الکتریکی ٬ ساختن میکروفونهای بلوری و سوزن گرامافون استفاده میشود.
خواص نیم رسانایی
بعضی از بلورها مانند بلور عنصرهای ژرمانیم ٬ سیلیسیم و کربن خاصیت نیم رسانایی دارند و تا اندازهای جریان الکتریکی را از خود عبور میدهند. اگر بلورهای نیم رسانا را گرما دهیم و یا در مسیر تابش نور قرار دهیم٬ مقاومت الکتریکی آنها کم میشود و الکتریسیته را بهتر عبور میدهد. نیم رساناها در صنایع الکترونیک و مخابرات بصورت دیود و ترانزیستور و قطعههای دیگر الکترونیکی بکار میروند. دیود یا یکسو کننده از دو قطعه بلور نیمه رسانا ساخته میشود و برای یکسو کردن جریانهای متناوب بکار میرود. ترانزیستور از سه قطعه بلور نیم رسانا تشکیل میشود و برای تقویت جریانهای ضعیف و یکسو کردن جریان متناوب بکار میرود. دیودها و ترانزیستورها از قسمتهای اصلی گیرندهها و فرستندههای رادیو و تلویزیون هستند.
پدیده دو شکستی
بعضی از بلورها نور را به دو دسته پرتو تقسیم میکنند، بر اثر این پدیده در کانیهای شفاف ٬ مانند کربنات کلسیم شکست مضاعف ایجاد میشود. اگر نوشتهای را زیر کربنات کلسیم قرار دهیم بصورت دو نوشته دیده میشود.
بعضی از بلورها خاصیت جذب انتخابی دارند. مانند بلور تورمالین که پرتوهای نور را به دو دسته تقسیم میکند. یک دسته آنها را جذب میکند و دسته دیگر را از خود عبور میدهد. از این خاصیت برای ساختن فیلمها و عدسیهای قطبنده (پلاریزان) و برای کاهش شدت نور چراغهای اتومبیل استفاده میشود. عدسیهای قطبنده را در ساختن ابزارهای نوری مانند میکروسکوپهای قطبنده (پلاریزان) را از ورقه نازک پولاروید (ورقه شفاف و نازک نیترات سلولز) میپوشانند.
خواص ساختاری
بعضی از ویژگیهای بلورها به نوع و موقعیت پیوند بین مولکولهای آنها بستگی دارد. مثلا” هر چه پیوند اجزای یک بلور قویتر باشد نقطه ذوب آن بالاتر و سختی و مقاومت آن بیشتر است، مانند بلورهای الماس و گرافیت که از نظر ترکیب شیمیایی یکسان هستند و هر دو از کربن تشکیل شدهاند، اما به دلیل تفاوت در پیوند شیمیایی میان اتمهای آنها سختی و مقاومت گرافیت کم ، اما سختی و مقاومت الماس بسیار زیاد است. بعضی از بلورها به سبب شکل پیوندهای داخلی ٬ در امتدادهای معینی به آسانی میشکنند، مانند بلور نمک طعام و بعضی به آسانی ورقه ورقه میشوند، مانندبلورهای میکا. از خاصیت سختی و مقاومت بلورها در ساختن انواع کاغذها و تیغههای سمباده و همچنین در ساعت سازی استفاده میکنند.
بلور شناسی
نگاه اجمالی
بلور شناسی ، علم مطالعه بلورهاست. با ارائه روشی برای توضیح چگونگی تعیین خواص فیزیکی ماده از روی سطح آن ، یعنی اصل تقارن بلور شناسی بصورت علمی مستقل در آمد. در دهه 1880 ، فیزیکدانان شواهد کافی گرد آورده بودند که پدیدههای مختلفی از قبیل در شکستگی ، انبساط گرمایی ، وقف الکتریسیته و پیزو الکتریسیته را باید با استفاده از شکل بلور توضیح داد. برای مطالعه بلورها روشهای مختلفی وجود دارد که از مهمترین آنها بلور شناسی توسط اشعه ایکس و روشهای پراش الکترون.
سیر تحولی و رشد
مطالعه بلورها به دوران یونانیها و رومیها و مطالعات کوارتزهای گوناگون ، توسط ننوفراستو و پلینیو ، باز میگردد. در سده هفدهم نخستین تلاشها برای توصیف نظم ساختاری بلورها به عمل آمد. رابرت هوک اظهار داشت که مشکل کوارتز را با فرض این که کوارتز از آرایش تناوبی کرههایی تشکیل شده باشد، میتوان توضیح داد. کریستیان هویگنس به منظور توصیف پدیده دو شکستی نور ، فرض کرد که کلسیت از آرایش تناوبی بیضیهای دوار تشکیل شده است. در سال 1784 ، ژنه ژوست هادی این فرض را مطح کرد که در بلورها مولکولها در گروههایی به شکل متوازی السطوح قرار گرفتهاند. در آرایش فضایی این گروهها میتواند شکل بلوری ماکروسکوپیکی مشاهده شده را توضیح دهد.
در سال 1827 اوگوست کوشی معادله مربوط به کشسانی را بدست آورد و با این مطالعات و با استفاده از بیست و یک پارامتر توانست شرح دهد، چگونه جسم جامد تحت اثر کنش خارجی معلوم کرنش میکند. او به مطالعات خود ادامه داد و دریافت که برای توصیف بلورها با توجه به طبیعت شبکهای آنها به پارامترهای کمتری نیاز است. پنج سال بعد توانست ارنست نویمن این نتیجهها را برابر مطالعه برهمکنش میان نورد ماده بر اساس مکانیک بکار برد. او فرض کرد که نور از ذرات خردی درست شده است. دانشجوی وی والدر سار فوگست که بعدها استاد دانشگاه کوتینگتون شد، نخستین کسی بود که تمام اطلاعات و دستاوردهای مربوط به ارتباط میان خواص فیزیکی و ساختار بلورها را در تناوبی گرد آورد.
بلورشناسی نوین
در سال 1912 ، بلورشناسی نوین متولد یافت. در آن سال ماکس و گروهش تصویری از پراش پرتوهای ایکس توسط بلور 3ns بدست آوردند. این آزمایشها سرشت موجی پرتوهای ایکس را ، که ویلهم کنراد رونتگن در اواخر سده نوزدهم کشف کرده بود و همچنین آرایش تناوبی خوشههای اتمها را در دوران بلور به اثبات رساند. ویلیام لارش براک و پدرش ، ویلیام هنری براگ در همین زمینه به پژوهش پرداختند و معادله مشهور زیر را بدست آوردند:
2sinӨ = nλ
که در آن d فاضله میان صفحهای خانواده معینی از صفحههای بلوری ، n که مرتبه بازتاب نامیده می شود، عدد طبیعی λ طول موج ایکس مورد استفاده و Ө زاویه فرود و زاویه بازتاب باریکه است. این معادله میگوید که کدام زاویه برای بازتاب با طول موج و خانواده صفحههای خاص مناسب است، بازتابهایی که از لحاظ هندسی مجازند در طبیعت یافت میشوند.
بلور شناسی با پرتو ایکس
اگر نمونهای از تک بلور را با استفاده از پرتوهای سفید ایکس ، پرتوهایی که نه یک طول موج ، بلکه گسترهای از طول موجها را در بردارد مورد مطالعه قرار دهیم. نقش خون لاوه بدست میآید تحت این شرایط در معادله 2dsinӨ = nλ میتواند مقادیری زیاد داشته باشد. اما Ө زاویهای میان پرتو فرودی و صفحه ، برای یک خانواده صفحات خاص مقداری ثابت است. معمولا طول موجی مانند λ وجود دارد که در معادله براگ صدق میکنند و بازتاب رخ میدهد.
اگر نمونهای را با فیلم عکاسی یا آشکارسازی جدید دیگری احاطه کنیم. در نقاط مختلف روی فیلم لکههایی بدست می آوردیم که به پرتوهای بازتابیده از خانوادههای مختلف صفحات بلور مربوط میشوند. با پردازش این دادهها به طریق ریاضی به آنچه نقش پراشی را بوجود میآورد میتوان پی برد. در نتیجه ، ساختار میکروسکوپی بلور را معین میکند، یعنی میتوان فهمید شبکه بلوری این ساختار چگونه است و چه اتمهایی در تلاقی شبکهای قرار دارند.
روش پودری
برای مطالعه بلور شناسی توسط اشعه ایکس روشهای استاندارد دیگری هم وجود دارند که در این میان روش پودر از همه رایجتر است. در روش پودر بجای تک بعدی از نمونهای استفاده میشود که بصورت بلورهای کوچکی به ابعاد 1µm یا کمتر خرده شده است. در این روش باریکه تک فام از پرتوهای ایکس به نمونه تابیده میشود. و در این حال برای هر خانواده خاصی از صفحات تعداد زیادی بلورک با سمتگیری مناسب پیدا میشوند که بازتاب براگ فرودی است. اما تند چتری که هر تکه از پارچه آن با دسته چتر زاویهای یکسان میسازند. باریکههای بازتابیده روی مخروطی قرار میگیرند که گشودگی آن دو برابر گشودگی مخروط قبلی است. زیرا باریکه بازتابیده نسبت به باریکه اولیه زاویه 2Ө میسازد و این در حالی است که زاویه بین صفحه و باریکی اولیه برابر Ө است.
اگر فیلم عکاسی را در راه باریکه خروجی قرار دهیم، از تلاقی مخروط اخیر با صفحه عکاسی یک دایره بدست میآید: فیلم عکاسی را معمولا به شکل نوار باریک دایرهای در میآوردند و آنرا روی صفحهای که شامل باریکه خروجی است قرار میدهیم. فیلم را سوراخ میکنند تا باریکه بتواند به نمونه برسد. از تلاقی مخروطهای بازتابشی مربوط به صفحههای مختلف بلور فیلم نقش پراشی خطی بدست میآید.
بلور شناسی به روش پراش الکترون
در آغاز دهه 1990 روشهای جدیدی پیدا شدند که مشاهده مستقیم سطحهای بلورین را امکان میسازند. درک تغییرات ریخت شناسی که هنگام رویاندن بلور برای کاربردهای الکترونیک روی میدهند. با استفاده از پراش الکترون بجای پرتو ایکس و تحت زاویهای کم از سطح بلورها حاصل شده است. با استفاده از میکروسکوپ تونلی روبشی برای نخستین بار ، امکان مشاهده مستقیم ساختار شبکهای بلورها از طریق مشاهده اتم منفرد فراهم شد.
رشد بلور
دیدکلی
پیشرفت تکنولوژی قطعات حالت جامد نه تنها به توسعه مفاهیم قطعات الکترونیکی بلکه به بهبود مواد نیز وابسته بوده است. شرایط رشد بلورهای نیم رسانا که برای ساخت قطعات الکترونیک استفاده میشود، بسیار دقیقتر و مشکلتر از سایر مواد است. علاوه بر این که نیم رساناها باید به صورت تک بلورهای بزرگ در دسترس باشند، باید خلوص آنها نیز در محدوده بسیار ظریفی کنترل شود. مثلا تراکم بیشتر ناخالصیهای مورد استفاده در بلورهای سیلیسیوم فعلی از یک قسمت در ده میلیارد کمتر است. چنین درجاتی از خلوص ، مستلزم دقت بسیار در استفاده و بکارگیری مواد در هر مرحله از فرآیند ساخت است.
تاریخچه
رشد سیلیسیوم تک بلور اولین بار در آغاز و میانه دهه 1950 انجام گرفت که هم اکنون نیز در ساخت مدارهای مجتمع از آن استفاده میشود.
روشهای رشد بلور
رشد از مذاب
یک روش متداول برای رشد تک بلورها ، سرد کردن انتخابی ماده مذاب است به گونهای که انجماد در راستای یک جهت بلوری خاص انجام میپذیرد.
یک مثال
ظرفی از جنس سیلیکا (کوارتز شیشهای) در نظر بگیرید که دارای ژرمانیوم (Ge) مذاب است و میتوان آن را طوری از کوره بیرون آورد که انجماد از یک انتها شروع شده به تدریج تا انتهای دیگر پیش رود. با قرار دادن یک دانه بلوری کوچک در نقطه شروع انجماد میتوان کیفیت رشد بلور را بالا برد. شکل بلور بدست آمده توسط ظرف ذوب تعیین میشود. ژرمانیوم ، گالیم آرسنیک (GaAs) و دیگر بلورهای نیم رسانا اغلب با این روش که معمولا روش بریجمن (Bridgman) افقی نامیده میشود، رشد داده میشوند.
معایب رشد بلور در ظرف ذوب
در این روش ماده مذاب با دیوارهای ظرف تماس پیدا میکند و در نتیجه در هنگام انجماد تنشهایی ایجاد میشود که بلور را از حالت ساختار شبکهای کامل خارج میسازد. این نکته بویژه در مورد Si که دارای نقطه ذوب بالایی بوده و تمایل به چسبیدن به مواد مذاب را دارد، مشکل جدی است.
روش جایگزین
یک روش جایگزین ، کشیدن بلور از مذاب در هنگام رشد آن است. در این روش یک دانه بلوری در داخل ماده مذاب قرار داده شده و به آهستگی بالا کشیده میشود و به بلور امکان رشد بر روی دانه را میدهد. معمولا در هنگام رشد ، بلور به آهستگی چرخانده میشود تا علاوه بر هم زدن ملایم مذاب از هر گونه تغییرات دما که منجر به انجماد غیر همگن میشود، متوسط گیری کند. این روش ، روش چوکرالسکی (Czochoralski) نامیده میشود.
پالایش ناحیهای و رشد ناحیه شناور
استفاده از ناحیه مذاب متحرک به خصوص وقتی که رفت و برگشتهای متعددی در راستای شمش انجام میپذیرد، موجب خلوص قابل توجهی در ماده اولیه میشود. این فرایند پالایش ناحیهای نامیده میشود. تکنیکهای متداول برای ذوب شمش عبارتند از : تابش گرما از یک گرماده مقاومتی ، گرمایش القایی و گرمایش بوسیله بمباران الکترونی در فصل مشترک مایع و جامد که در حال انجماد است. توزیع خاصی از ناخالصیها بین دو فاز وجود خواهد داشت، کمیت مهمی که این ویژگی را مشخص میکند، ضریب توزیع Distribution Coefficient است که به صورت نسبت تراکم ناخالصی در جامد به تراکم آن در مایع در حالت تعادل تعریف میشود.
ضریب توزیع تابعی از ماده ، ناخالصی دمای مرز مشترک بین جامد و مایع و سرعت رشد است. اگر مرورهای متعددی صورت گیرد، طول بیشتری از شمش خالص شده و پس از مرورهای متعدد اکثر ناخالصیها به انتهای شمش کشیده میشود که میتوان آن را برید و جدا کرد و در نتیجه یک بلور با خلوص خیلی زیاد باقی میماند. ضریب توزیع که روند بالایش ناحیهای را کنترل میکند، در هر گونه رشد از مذاب نیز اهمیت دارد.